
N94-14630

The Use of Linked Lists in the Simulation of

Controller - Structure Interaction

Ralph Quan 1

Frank J. Seiler Laboratory,

U. S. Air Force Academy, Colorado Springs, CO 80840

Abstract. An algorithm for the computer simulation of large space structures

under active control is considered. Linked lists are used in a matrix data structure

to implement the trapezoidal rule on the system differential equations. The use of the

trapezoidal rule ensures that the numerical stability is equivalent to the system stability,

which is essential for this type of simulation. The sparsity of the system matrices is

exploited by the linked lists, and the algorithm efficiently steps through the lists in an

orderly fashion. Results of simulations on a NASA large space structure experiment are

reported.

Key words, large space structures, control, linked lists, simulation, trapezoidal

rule, LU factorization, LDL T factorization, sparsity

1. Introduction. Future large space structures such as the space crane and the

aerobrake will possess high flexibility and low damping. The suppression of vibrations is

an important problem for this type of structure, since slewing maneuvers or disturbances

can cause large amplitude vibrations over long time intervals.

Vibration suppression can be accomplished via active feedback control. However,

it is possible that an unstable controller design would damage the structure. Com-

puter simulations are therefore desirable for evaluating controller performance and for

detecting instability.

Various approaches have been taken to simulate controller - structure interaction

(CSI), such as those described in [1,2,3,4] and [5,p.3]. These approaches have accuracy

and / or numerical stability limitations inherent in them. The method to be described

in this paper overcomes these limitations. For instance, accuracy is maximized through

the use of the finite element model of the large space structure, instead of a reduced

order model. In addition, the numerical stability of the simulation is made equiva-

lent to the stability of the physical system. This has been difficult to imPlement in

the past, because of the differences between large space structure models and control

system models. Finite element models of large space structures contain large, sparse,

and symmetric matrices; compensator models tend to be small, dense, and unsymmet-

INational Research Council Fellow, Aerospace Sciences Division

E-_D_NG PAGE BLANK NOT FILMED

153

ric. An implicit integration scheme such as the trapezoidal rule has the property that

the numerical stability of the simulation is equivalent to the stability of the physical

system, but it also combines the matrices of the structure and the compensator; this

destroys sparsity and symmetry. Computer memory requirements can thereby become

impractically large, if finite element data structures are used (banded matrix, skyline

matrix, etc.). Therefore, a linked list data structure is developed below which recovers

the sparsity of the computer simulation• Linked list algebra and factorization are also

developed, so that an implicit integration scheme can be implemented.

2. Closed Loop System Equations. Consider the following linear finite element

model of a multi - input, multi - output structure:

M(i + C_l + Kq = Bu (1)

y=Cy (2)

where the displacement q e _nxl, the velocity (t e R nxl, the acceleration/_ e R n×l, the

input force u e _mxa, the output vector y e _nxl, and M, C_ K, B_ Cy are the mass,

damping, stiffness, input, and output matrices, respectively.

The mass matrix is assumed to be positive definite; the damping and stiffness ma-

trices are assumed to be positive semidefinite. An additional n differential equations

are associated with equation (1), because the velocities are the derivatives of the dis-

placements.

A linear compensator is assumed, with dynamics as follows:

where the compensator state vector x e _r×l, and the matrix L e _(r+m)×(r+3n).

The differential equations above can be appended together to form one set of differential

equations:

= Vz (4)

If we have the state z at the Nth time step (time t), then we can obtain the state

154

at the N+I time step (time t+h) by using the trapezoidal rule:

h.
z_+ 1 = z_ + _(z_+ 1 + _s)

A linear system is stable if and only if its eigenvalues are in the left half complex

plane. It is desirable that this system stabilit_ region coincide with the numerical stabil-

ity region. Unexpected damage would result if the computer simulation of a controlled

large space structure were to show stability, when in fact the controller were to destabi-
lize the structure. The numerical stability region of the trapezoidal rule does coincide

with the left half complex plane [6,7]; therefore this algorithm is a logical choice for the

simulation of controller - structure interaction.

3. Sparse Matrix Storage. Consider the following simplified control problem,

which illustrates the computer storage difficulties associated with the simulation of

controller - structure interaction:

If the structure is in a steady state condition, equation (1) simplifies to:

Kq=Bu (6)

As an example, consider the case where the structure has a tridiagonal stiffness matrix

(the 'x' entries represent nonzero elements):

i :_ 0 0 0 /

x z 0 0

K = 0 z x z 0 (7)
0 z x x

0 0 z z

The nonzero elements of this matrix exhibit a certain pattern, which makes it possible

to store the three diagonals of the matrix as three arrays. Let us place a force actuator

at the first degree of freedom:

B

1

(8)

155

Now place a displacement sensor at the last degree of freedom:

y : Cqq

Cq:(O 0 0 0 1)

and establish output feedback from the displacement sensor to the actuator:

(9)

(lO)

u = -gy

Then the closed loop system equation becomes:

(11)

I_:q = 0 (12)

x x 0 0

K= • • • 0 (13)
0 • _r _g

0 0 x z

The control has affected the sparsity pattern, and it is not clear if renumbering the

degrees of freedom would help considerably. When implementing the trapezoidal rule on

equations (1-3), the same situation is encountered. If all elements of such matrices were

stored, then computer memory would be wasted on the storage of zero-valued matrix

elements. This would be a serious problem for large space structure type problems.

Therefore, a linked list data structure is developed below which stores only the nonzero
elements.

4. Linked List Matrices. Figure 1 displays the data structure for a linked list

matrix. The leftmost array in the figure contains the number of nonzero columns in each

row. Adjacent to this array is another array which points into linked lists for each row.

Each record in the linked list contains a field for a floating point matrix data element,
and a field for the column number.

As it will be shown later, addition and multiplication of matrices can be done if

the linked lists are traversed in one direction. However, factorization of matrices will

require the deletion of matrix elements. A matrix element deletion requires that the

two surrounding elements be connected together; knowledge of the locations of the two

156

/

\
\
Number of

Columns

I

!

r

Floating Point

Data

(Row S)

Column Number

I

I

(Arrays)

Figure 1: Linked List Matrix

157

surroundingelements is needed. This information can be quickly obtained if the linked

list can be traversed in both directions. To establish this "double linking", there are

two pointers in each linked list record which point to the two surrounding elements. If

there is only one element in a linked list, then the two pointers point at that element.

Although it is possible to store and recall elements in any order (random access), it

is more efficient to store and recall matrices by rows. The next section demonstrates

that such row access can be used to implement the Mgebra needed for a controller -
structure interaction simulation.

5. Sparse Matrix Algebra

5.1 Sparse Matrix Addition and Multiplication

The addition of matrices is necessary for the assembly of the finite element model

from the element mass and stiffness matrices. Matrix addition, multiplication, and

factorization is also required for the implementation of the trapezoidal rule (see [5]

for details). The addition of two linked list matrices can be accomplished by stepping

through the linked lists of the first matrix by rows. At the same time, the corresponding
element in the second matrix is recalled. The two elements from the two matrices are

added together and stored in the second matrix. Thus the final result appears in the
second matrix.

The multiplication of two matrices is often computed by using inner products:

Given Ae_ mxn, Be_ n×p

n

C = A,B, Ce_ mxp, Cij = _ AikBkj
k=l

(14)

In order to perform the multiplication efficiently :by stepping through the linked lists

in order, it is necessary to rearrange formula (14) into a form which resembles an outer

product:
m n

c = (15)
i=l j=l

where flij is the zero matrix of dimension (m × p) with the ith row replaced by the

jth row of the B matrix. Note that the A matrix is stepped through once, and that the

B matrix is stepped through at most m times. This multiplication procedure can be
illustrated for two dimensional matrices:

158

cllc12 __(ollo1 (bllb12 c21 c22] a21 a22] b21 b22]

_allbll + al_b21 anblz + a12522 /---- _a21bl 1 + a22521 a21512 + a22522

(o o)(o o)+ a21 bll b12 + a22 b21 b22

5.2 LU factorization of a Sparse Matrix

It is known that a matrix A can be factorized into a product of a lower triangular

matrix L and an upper triangular matrix U. If the matrix equation Ax = b must be

solved repeatedly for different b vectors, then the LU factorization leads to computa-

tional efficiency [8]. This situation exists during the simulation of controller - structure

interaction (see [5]). A linked list matrix is to be LU factorized, and therefore the usual

procedure for LU factorization needs to be modified. The new procedure is given as

follows:

a) Form the transpose of the matrix A (AT).

b) For all of the rows which have not been selected as a pivot row:

. Select the sparsest row as the pivot row.

This idea was used in [9]. However, the procedure described in [9] assumed that

the nonzero elements of the sparse matrix to be factorized are packed into arrays.

Deletions of matrix elements are necessary in the factorization, which is cumber-

some if the data is stored in arrays. With linked lists, deletions are simple in that

pointers in the matrix elements surrounding the deleted element are redirected

at each other. The insertion of matrix elements is also relatively simple. This is

important for the assembly of the finite element model via the addition of element

mass and stiffness matrices into the global mass and stiffness matrices [10]. Thus

a single data structure (the linked list matrix) can be used for the assembly of

the finite element model and for the implementation of the trapezoidal rule; this

avoids the need for conversions between data structures.

159

2. Find the element with the maximum magnitude within the pivot row. This ele-

ment will be referred to as the pivot element, and the column of this element will

be referred to as the pivot column. Later below, division by the pivot element

will be performed, which is why the maximum magnitude element is chosen as

the pivot element. If the matrix is nonsingular, a nonzero element will be found

in the pivot row.

3. Delete the pivot row from A T .

4. Save a copy of the pivot element, and delete it from A.

5. The nonzero elements in the pivot column are referred to as "target elements".

These target elements appear in a row in A T, allowing for quick access. For each

target element,

i) multiplier = - target element / pivot element

ii) Store the multiplier in the matrix L, and delete the target element from A
and A T .

iii) Multiply the pivot row by the multiplier and add it to the target row of A
and A T . Since we chose the sparsest row as the pivot row, we retain as much

sparsity as possible.

(End of factorization: The matrix U now appears in place of matrix A)

The matrix A is stored by rows. Since access by columns is needed above, A T is

stored. It might appear that this would double the storage requirements. However,

A is sparse. The LU factorization process creates "fill in" (some of the zero elements

become nonzero) within the U matrix. After each step of the factorization process,
another column of A T is no longer needed. The storage for this column goes towards

the storage of the "fill in" elements.

After the factorization has been completed, the linked list matrix A is left with the

upper triangular part of the factorization, and linked list matrix L is the lower triangular

part.

5.3 LDL w Factorization of a Sparse Matrix

A symmetric linked list matrix equation needs to be solved at every time step in

the simulation of controller - structure interaction (see [5]). Another problem where

a symmetric linked list matrix equation has to be repeatedly solved occurs during the

computation of the lowest frequency modes of a structure (see [5]). The LDL T factoriza-

tion can be employed to efficiently solve these matrix equations. L is a lower triangular

160

matrix with oneson the diagonal,andD is adiagonalmatrix. TheLDLT factorization
is describedand analyzedin GolubandVan Loan [8]. The algorithm is listed below in

the style which Golub and Van Loan use in their text. The notation l:j signifies all of

the integers from 1 to j.

LDL T Algorithm: If A e _(nxn) is symmetric then the following algorithm computes a

unit lower triangular matrix L and a diagonal matrix D so that A = LDL T. It is

assumed that only the lower half of the matrix A is stored, because of the symmetry.

The matrix A is overwritten with the matrices L and D by this algorithm.

forj = 1 :n

for i= 1:(j-l)

v(i) = A(j, i)A(i, i)
end

v(j) = A(j,j)- A(j,(I: j - 1))v(1: (j - 1))

A(j, j) = v(j)

A((j + 1): n,j) =

(A((j+ 1): n,j)- A((j+ 1): n,l: (j - 1))v(l: (j- 1)))/v(j)
end

The LDL T algorithm can be modified to handle sparse symmetric matrices of the linked

list storage type:

The formation of the v vector on lines (2 - 5) is done by stepping through linked

lists, instead of looping over the entire range from 1 to (j - 1). Because of the sparsity

of the matrix, the v vector is also sparse.

The algorithm yields one column of the L matrix at a time, as shown in lines (7 -

8) of the algorithm. In line (8), a vector is formed by multiplying a submatrix by the

v vector (A((5 + 1) : n, 1 : (j - 1))v(1 : (j - 1))). A small example will be useful for

illustrating the sparsity:

Vr = Mvl (16)

161

/i//°°!)/i)00°00°00°x00 (17)

The symbol "x" in the above equation signifies a nonzero element which is in a

linked list. There is no need to perform the computations for rows 3 and 4 of the result

vector Vr, because all of the terms for those rows are zero. Since the linked llst storage

scheme is being used, the zero part of v i does not actually exist:

vr = (is)

(19)

The matrix M is stored by rows. If the transpose of M is stored, then it is efficient

to traverse the columns of M corresponding to the nonzero rows in vi. The union of

the nonzero rows in those columns forms the set of nonzero rows in the result Vr. We

will refer to this set of rows which need to be handled as the set U.

It might appear that the storage of A T would double the storage requirements.

However, A is sparse. The LDL w factorization process creates "fill in" within the

matrix. However, after each step of the factorization process, another column of A T is

no longer needed. The storage for this column goes towards the storage of the "fill in"
elements.

The new algorithm is given as follows:

a) Form the transpose of the matrix A.

b) For each row p of A:

1. Delete the row from the A T.

2. Determine the set U of rows which need to handled.

162

3. Recall the diagonal element App for that row, and delete'it from A.

4. Compute the v vector described above.

5. For all the rows q in the set [.J which need to be handled:

i) Recall the section of the row q of A up to column p.

ii) Compute the dot product of that section with the v vector.

iii) Subtract this dot product from Aqp, and divide by Vp. Store this result in

Aqp and in ATq.

(End of Procedure)

6. The Mini-Mast Truss. Mini-Mast is an active control experiment being

maintained at the NASA Langley Research Center [11]. A linear finite element model

having 714 degrees of freedom was developed for this truss. Two of the accelerometers

were used as sensors, and all three of the torque wheels were used for control.

The Rayleigh damping coefficients were tuned to provide 2 percent damping in the

first two modes and 1 percent damping in the next three modes. These first five modes

and the dynamics of the torque wheels were combined to form a reduced order model
of the structure, and linear quadratic regulator theory was used to design a controller.

The total number of states in the compensator state vector is 16. Figures 2 and 3 show

the open loop response and the closed loop response, respectively. In both cases, a one

second triangular pulse was applied at one of the torque wheels. The simulations were
done on a Sun-4 workstation; total memory requirements were less than 4 megabytes.

About 6 minutes of computer time was used to produce the 280 time steps shown in
the simulation.

7. Conclusion. An alternative approach towards the simulation of controller -

structure interaction (CSI) has been described in this paper. Linked lists were used

to implement the trapezoidal rule, which enforces an equivalence between numerical

stability and system stability. This characteristic is essential for CSI analysis, and has

not been demonstrated by previous CSI simulation methods.

Matrix storage has been implemented with linked lists, which required the develop-

ment of linked list matrix algebra for the implementation of the trapezoidal rule. Thus
methods for linked list matrix addition, multiplication, LU factorization, and LDL w

factorization were developed. The linked lists are stepped through in order in these

methods, which minimizes the number of computations required. Memory requirements

163

0.01 [

0.005 '

"._.._

8 -o.oo5
<

',-i

i(,

i :

., ¢,

, %,

-0.01

-0.015
0 1 2 3

Figure 2: Mini-Mast Open Loop Response
r r

'l

:: %'

x direction

;.:,J

z_ i __t_ ___ a_____±__5 6 7 8 9 10

Time (sec)

0.01

0.005

Figure 3: Mini-Mast Closed Loop Response

_/- x direction

,,:,,,,

y direction

-0.015
0 1 2 3 4 5 6 7 8 9

Time (sec)

164

are also minimized because storage is dedicated only to nonzero matrix elements.

The feasabillty of this approach was demonstrated on a computer workstation for

a large space structure experiment (the Mini-Mast truss). These linked list matrix

methods show that it is possible to simulate the control of some large space structures

without the use of a supercomputer. In the case of a supercomputer, it is not certain how

effective linked list methods would be. A linked list is not in the form of a vector, which

suggests that methods based on it would not take advantage of the special capabilities of

vector processing machines. In the case of parallel processing supercomputers, research

needs to be done to determine the effectiveness of these methods on such machines.

References

[1] W. K. Belvin and K.C. Park, Computat!onal Architecture for Integrated Controls

and Structures Design, Third Annual NASA/DOD CSI Conference, San Diego, CA

(January 29 - February 2, 1989).

[2] K.C. Park and W. K. Belvin, Stability and Implementation of Partitioned CSI Solu-
tion Procedures, 30th Structures, Structural Dynamics and Materials Conference,

Mobile, Alabama (April 3-5, 1989).

[3] W. K. Belvin, Simulation and Interdisciplinary Design Methodology for Control-

Structure Interaction Systems, Ph.D. thesis, University of Colorado at Boulder

(August 1989).

[4] K.C. Park and W.K. Belvin, Discrete Integration of Continuous Kalman Filtering

Equations for Time Invariant Second-Order Structural Systems, AIAA Guidance,

Control and Navigation Conference_ AIAA 90-3387, Portland, Or., Aug. 1990.

[5] K. Quan, Numerical Simulation of Large Actively Controlled Space Structures,
Ph.D. thesis, University of Colorado at Boulder (May 1991).

[6] M. Geradin, M. Hogge, and G. Robert, Time Integration of Linear and Nonlin-

ear Dynamic Problems, Aerospace Laboratory of the University of Liege, Liege,

Belgium, Report VA-38 (January 1984).

[7] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations,

Prentice-Hall (1971).

[8] G. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University

Press (1989).

165

[9] K. Schaumburg,J. Wasniewski,and Z. Zlatev, The Use of Sparse Matrix Tech-

nique in the Numerical Integration of Stiff Systems of Linear Ordinary Differential

Equations, Computers and Chemistry, Vol. 4, p. 1-12, (1980).

[10] O.C. Zienkiewicz, The Finite Element Method (Fourth Edition), McGraw- Hill

(1989).

[11] Richard Pappa, OSI Testbed User's Guide, Spacecraft Dynamics Branch, Structural

Dynamics Division, NASA Langley Research Center, Hampton, VA (March 1989).

[12] R.. Quan and M. Balas, Numerical Simulation of Actively Controlled Space Struc-

tures, The Proceedings of The NASA-UCLA Workshop on Computational Tech-

niques in Identification and Control of Flexible Flight Structures, Lake Arrowhead,

Ca., Nov. 2-4, 1989.

Acknowledgments

This work was done under Professor Mark J. Balas at the University of Colorado

at Boulder. Thanks goes out to the Center for Space Structures and Controls, for the

use of their computer facilities. In addition, the financial support through the NASA

Center for Space Construction at the University of Colorado - Boulder and through the

Century XXI fellowship program is gratefully acknowledged.

166

